Coherent Marine Radar Measurements of Ocean Surface Currents and Directional Wave Spectra

Dennis B Trizna
Imaging Science Research, Inc.
6103B Virgo Court
Burke, VA 22015 USA

Abstract- A coherent marine radar with 3-m resolution has been developed that measures the radial component of the orbital wave velocity of ocean waves, as well as the mean radial ocean surface velocity. This radar allows direct measurement of the ocean wave spectrum by means of 3D-FFT processing of a sequence of coherent radar images of orbital wave patterns. Currently, with a 2.5-s rotation rate, 256 images cover a period of the order of ten minutes, with frequency alias at 0.2 Hz, with upgrade to 0.4 Hz planned with later units. Radial current maps are obtained by a superposition of all radial velocity images collected. This summing forces orbital wave patterns to blend to the mean, resulting in the map of mean radial current. A pair of such radars operated at a coastal site, separated by a few hundred meters along the coastline, may allow the combination of 2-site radial components to be combined into a mean current vector field. Results of first tests of the first prototype radar measurement of radial current and RMS waveheight are presented for a field site at the U.S. Army Corps of Engineers Field Research Facility, Duck, N.C.

I. OMEGA-K SPECTRA

Marine radar offers a snapshot sequence every 1.25 to 2.5 s of the coastal wave field that can be used for the application of a number of image processing algorithms. A number of researchers have established the utility of using both radar and optical video image sequences to derive useful coastal ocean properties from such data [1-6]. We have recently developed an integrated radar and data acquisition package to make such measurements synoptically and unattended. The prototype system has been set up at the U.S. Army Corps of Engineers Field Research Facility (FRF), Duck, NC for extensive testing and ground truth comparison. Real time results can be viewed at the FRF website (frf.usace.army.mil/radar). The coherent marine radar processing is very similar to that of the non-coherent version, as maps of ocean waves are also created. However, in the case of the standard marine radar, the image is one of backscatter intensity. For the coherent marine radar, the image will be the radial component of orbital wave velocity, that will represent traveling ocean wave orbital wave velocity maps. As the processing is similar for both cases, we first present the general approach used for the standard marine radar.

II. COHERENT RADAR DESCRIPTION

Use of non-coherent marine radar for ocean wave spectra measurement is feasible by making use of multiple-rotation images, and 3-D FFT image processing to derive $\Omega$-K ocean wave spectra [1-7]. We have developed a similar capability, based on the Sitex family of marine radars. The coherent radar has a similar look to standard marine radars, as seen below, for such a system currently operating at the USACE Field Research Facility, at Duck NC shown in Fig. 1 below.

Figure 1. ISR coherent marine radar used for wave sensing.

The radars used for the results presented here are two. The first is our coherent-on-receive ISR CORrad Digital Imaging Radar Model 25.9, based on a modified Koden 25-kWatt 9’ antenna system, with our digital acquisition system and signal processing systems, Radar Image Processing Suite (RIPS). A fully coherent prototype radar (COHrad) was developed in house, and a new solid state transceiver just delivered for our commercial version. With suitable processing, the COR IF signal can be used to retrieve coherent estimates of radial velocity similar to CORrad, as will be demonstrated later. A photo of the solid state module, including 5-watt power amplifier, is shown in Fig. 2.

Figure 2. Solid state transceiver module.
The radar makes use of pulse compression to achieve improved gain over the standard marine radar, allowing it to operate with just 5-watts of peak power. A 1-µs pulse that is transmitted is shown in Fig. 3a below, chirped over 30 MHz in this case, and mixed up to X-band for transmission. Echoes have a similar shape and pulse compression correlation creates in-phase (I) and quadrature (Q) samples that are used for velocity measures. These are shown in Fig. 3b and 3c below.

The phase at each time sample is determined from the equation \( \text{ATAN}(I/Q) \), and a phase difference, \( \Delta \phi \), from two consecutive pulses is calculated for each range sample. This is proportional to the radial velocity using the Doppler equation, \( v = \Delta \phi / (\lambda/2) \). The range-azimuth matrix of radial velocities are then transformed into Cartesian co-ordinates for each rotation of the radar. The radar video echo intensity signal, \( S(R, \phi) \), can be formed at each pixel for comparison using \( S(R, \phi) = (I^2 + Q^2)^{1/2} \). A map of images of intensity and radial velocity is shown below in Fig. 4a and 4b.

The radial velocity map appears to show usable information at ranges where the intensity signal is weak, but still provides quality I/Q values to allow phases to be determined. There is an offset due to current here that will be discussed later. The red box represents a user-selectable set of pixels that can be chosen for successive rotations to be used as input to a 3D-FFT analysis that is used to determined values of spectral samples.
of waveheight-squared/Hz. This window can be moved about the radar coverage scene to study wave dissipation, for example, or wave refraction spectra in unusual bathymetry environments. One must correct for the radar aspect relative to the primary wave direction, as the radar radial component will vary like cosine of the difference of wave travel vs radar illumination.

III. OMEGA-K SPECTRA

Fig. 5 represents a subset of frequency spectra from a set of 32 that are available when using 64 rotations of 64x64 pixels, then averaging over 8 of such sets covering a 10-min period. The yellow circle seen represents the shallow water dispersion rule for the depth chosen, 10 m, while the red circle represents deep water.

The spectral peaks clearly lie on the shallow water dispersion circle chosen, and each image can be filtered using a band between 80% and 120% of this radius, to account for tidal changes in depth. All energy in this band will represent samples of wave height squared per unit Hz, (0.4Hz/64 in this case). This is obtained by relating the radial velocity from the radar measure to the spectral waveheight component using the time derivative of the equation defining the x-position of a patch of water on a wave surface:

\[ X(t) = \frac{H}{2} \cos(\Omega t) \]  

(1)

In the case of processing the intensity image of a standard marine radar, similar image intensity spectra result, but each radar frequency component must be scaled to some surface truth representation of the wave frequency spectrum using an empirical constant, a spectral Modulation Transfer Function. This has shown to be in error when environmental conditions change (wind direction relative to wave direction, for example), and if the radar modulator ages with time and exhibits changing output power. The coherent radar approach requires no such scaling, and is independent of such environmental factors. A patent based on this approach has been applied for by ISR and is pending, and an international provisional patent has also been filed.

IV. FREQUENCY SPECTRA AND H_{m0}

If one sums the energy in the band about the shallow water dispersion relation for each of 32 windows, one derives an omni-directional frequency spectrum. A comparison of that derived from coherent radar data over 10 minutes, and the pressure array sensor at the FRF for two overlapping periods of 3-hr each is shown in Fig. 6 below.

If one sums the energy from each spectral peak in the frequency spectrum above, one forms H_{m0}, a RMS waveheight estimate. During November of 2009, Hurricane Ida passed offshore of the FRF site and waves of 4-m were observed. Below are plotted the time series of H_{m0} from the radar vs that from the FRF pressure sensor array.

The black circles represent very short times of collections, just 64 rotations covering ~2.5 minutes, enought for a single 3D-FFT analysis. As the winds subsided but the waves still being high, the collections were increased to 256 rotations, represented by the red circles. The agreement is quite good for these conditions and illumination into waves offshore of the pier end. The outlier data might also be due to very large breaking waves offshore, enhancecd using H-pol antenna.
The CORrad was run simultaneously from the same location a few meters away and processing that data in a similar fashion produced results for Hm0 as well. These are shown in Fig. 8 below.

Figure 8. CORrad Hm0 vs FRF pressure array results, with outliers again.

The results from the CORrad system are quite similar to those of the COHrad for the same period, and outliers for the higher wave conditions occur here as well.

A third radar was operated at a different time in 2010, from a location on shore instead of the end of the pier. This is a scenario that is more likely for most potential applications. This was data from a CORrad as well, running over 512 rotations at twice the rotation rate of the COHrad, so covering the same 10-min or so time period. The height of the antenna was lower than that at the end of the pier, atop a 32’ telescoping tower on ~3-m mean height behind the dune at the FRF site. They were collected at relatively short range, 384 m offshore, as only 512 range samples were collected, and compared with FRF data from ~800 m offshore.

Figure 9. CORrad data from a shore site.

In this case, the results show the effect of the depth change with tidal cycle for the higher wave conditions, which was not accounted for. Nonetheless, the comparison is quite good for this shore side location.

V. VERTICAL POLARIZATION DURING IRENE

In the summer of 2011, Hurricane Irene passed the Outer Banks inland of our radar site, but waves generated earlier while the storm was still offshore generated 4.2 m waves at the FRF pier. In preparation for this storm, the COHrad antenna was switched from a 9’ horizontally polarized antenna to a 4’ vertically polarized unit. The hypothesis to explain the outliers seen in the previous figures was that for very high waves, severe spilling breakers were occurring in far deeper water than under lower wave conditions, and the acceleration of wave breaking crests under such conditions might be biasing the radial velocity measurements made with horizontal polarization. In a previous work (Trizna & Carlson, 1996), we showed the dramatic difference between low grazing angle images for HH and VV polarization. For HH, small scale breaking features dominate the scene, with their azimuthal dependence suggesting a scattering width of about 25 cm, with virtually no echo when seen from a direction illuminating the back of these waves, opposite the wind. For VV, these echoes do not appear, and distributed Bragg sources dominate the scattering process, with a modest front-to-back ratio of 6 dB or so when looking into the wind versus opposite it. This suggests that a vertically polarized antenna might eliminate outliers.

Figure 10 shows a time series of Hm0 measured using COHrad with the V-pol antenna for wave conditions up to 4.2 m. The outliers that occurred previously are not seen here.

For the same time, a CORrad was run with an H-pol antenna, covering the same period of collection and location at the end of the FRF pier. There were outliers in these data, starting at about the same Hm0 value as in the figures above. Thus, we feel that our hypothesis that outliers for high sea states above 3.5 m or so will generate errors in Hm0 retrieval. However, as small scale breaking allows one to image the location of the offshore bar, as we have shown previously, there may be a trade off in keeping an H-pol antenna for coastal sites, where the very high sea conditions are rarely encountered, but bad imaging is important. We have not yet compared the sensitivity between the two polarizations for very weak wave conditions, where H-pol might provide a reasonable echo for other applications as well. The agreement for the 0.4-m minima seen in Figure 10 do suggest that the ability to retrieve wave spectral conditions for small waves is not hampered severely.
VI. RADIAL SURFACE CURRENTS

As discussed earlier, if one takes the mean of the sum of all radial velocity images, in the absence of severe shadowing of the wave troughs by wave crests for steep wave conditions and modest to high waves, one can derive radial surface currents from either type of radar discussed here. Fig. 11 below shows an example of 256 rotations summed for both radial velocity and magnitude images for the COHrad system during the Nov 2009 storm.

Figure 1 Summed radial velocity (top) and intensity (bottom). The gap in the upper right quadrant of the radial velocity image is due to shadowing of the radar beam.

The maximum range extent in this case is about 700 m for the 1.5 km radar coverage (the pier is 600 m offshore). The drop off in radial velocity is thought to be due to the onset of shadowing, but has not been investigated thoroughly. Recent tests using a 19-m radar height was able to image currents out to 3-km range, so radial current measure is dependent on antenna height.

As the radar was turned during the experiment, it was difficult to make comparisons directly over surface truth currents from bottom mounted acoustic sensors that gave vector values. Instead, we calculated currents over a range-azimuth ring, summing between 250-250 meters range extent, then over 10 adjacent azimuthal bearings of the 595 that were available. The maximum value in azimuth was determined to be a measure of maximum mean current. The acoustic Doppler vector currents were used to get a magnitude time history as well and these were compared. Because the maximum radar current magnitude was not necessarily at the same range-azimuth as the 5-m acoustic sensor, nor at the same depth, the comparisons should be taken with a grain of salt. The results of such a comparison is shown in Fig. 12.

Figure 12. Time series of COHrad current magnitude (red triangles) and 3 acoustic depths near the surface, with scatter diagram comparison.

VIII. SUMMARY

We have demonstrated the use of a newly designed coherent marine radar to measure directional wave spectra and surface radial currents. Data were compared with surface truth instrumentation from the USACE Field Research Facility, both pressure array sensor data for wave height, and AWAC acoustic sensors for currents. Data from a coherent-on-receive radar that was run simultaneously from the end of the pier at the FRF and compared favorably as well. For this location, currents along shore can be measured reasonably accurately for
the modest radar height of roughly 11 m, as the radar is looking along the crests and troughs and does not suffer shadowing, even for modest to low radar height for this geometry. Looking offshore, the troughs would be shadowed by the crests for very steep waves, and the orbital wave velocity would not present a zero mean to the radar look. We found this to be the case for a shore based radar on another occasion, where the currents were in error due to crest orbital wave influences. For this case, the wave height analysis was still quite respectable. On more recent observations at other sites with radar heights ranging from 19 m to 26 m, no shadowing was encountered and long range currents could be measured accurately.

A pair of radars discussed here, placed of the order of 300 to 1,000 m apart, should be able to provide a vector map of surface currents at 3-m resolution. Such a method should be useful for detection of rip currents and riverine flow, in addition to currents in harbors for ship traffic application.

ACKNOWLEDGEMENTS

We wish to acknowledge the data provided by the USACE FRF, in particular, to Kent Hathaway who extracted the data from historical records that allowed the comparisons to be made on a timely basis. ISR has a continuing Co-operative R&D Agreement with the FRF.

The processing and analysis involved in generating results such as that shown here have patent applications currently pending in the U.S., Canada, and the European Union.

REFERENCES